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A stationary-phase approximation to the 
ship-wave pattern 

By F. W. G. WARREN 
Department of Mathematics, University of Sheffield 

(Received 12 September 1960 and in revised form 8 February 1961) 

Scorer (1950) has described an extension of the method of stationary phase. 
This method is used to derive an approximation to the wave pattern at large 
distances from the ship in a simple manner. The approximation is valid in the 
vicinity of the critical angle and the nature of the disturbance in this region is 
readily seen. The divergent and transverse wave systems in a critical region are 
shown, together with their variation of amplitude and phase. 

1. Introduction 
The pattern of gravity waves set up behind a ship on a steady course has been 

discussed by many writers. Hogner (1923) has given a first approximation to 
this pattern, and recently Ursell (1960) has given an asymptotic series solution 
for the critical region for a point disturbance. In  this paper a first approximation 
is derived in a simpler manner. 

An integral expression for the wave motion caused by a ship in deep water 
has been given, for example, by Hogner (1923, equation (51)). The form which 
we will use here is 

1; = ImSm $(k)eiz+(k)dk,  

where q5(k) = cosh k + i t a n  8 sinh 2k, and where $(k) is some function which 
depends on the shape of the ship. For the present purpose we may assume that 
p is infinite. 5 is the surface displacement at a point with Cartesian co-ordinates 
(z, y) or polar co-ordinates (r, O ) ,  where the x-axis (I9 = 0) is drawn on the surface 
against the direction of motion. The unit of distance is Uz/g, where U is the steady 
velocity of the ship. Terms of order r-l have been omitted in this representation. 

The usual method of stationary phase gives a first approximation of 1; in the 
region 181 < t a r 1  (1/2,/2) = B,, but it fails in the vicinity of 8 = 8, since q5'(k) 
and $"(k) vanish together along this line. (The dashes denote differentiation with 
respect to k.) Scorer's method overcomes this difficulty by replacing q5(k) with 
parabolas of the third order applied at the stationary values of q5. This leads to 
an approximation in terms of the Airy integral Ai (2 )  and the conjugate integral 

- P  

Gi (2 )  : 
Ai(z) + i Gi(z) = - exp (i(zu + Qd)) dzc. 

= o  Sm 
Ai ( 2 )  has been tabulated by Miller (1946). Scorer (1950) tabulates Gi (2) for 
IzI < 10, and for larger values there is an asymptotic expression valid to the 
accuracy of the tables. 
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2. The approximation 
For this purpose the range of integration is suitably divided at k,, where 

#"(k,) = 0. The function #(k)  has two turning points when 181 < 8, and these 
are denoted by the suffixes T and D, where kD < kI -= k,. The approximation to 
#(k) is then as follows: 

(i) $(k) + #,++&k-k,)2++&(k-kT)3, if k > kI, 

and (ii) #(k)  + # ~ + ~ ~ ~ ( k - k D ) 2 + ~ # ~ ( k - k D ) 3 ,  if k < kI.  

Figure 1 illustrates this. The expression for c is written y = c, + &,, where 

FIGURE 1. An illustration of the approximation to $ ( k )  when 101 < 8,. The 
approximation is most accurate where the rate of change of phase is zero. 

It is assumed that $(k)  is sensibly constant in the region of stationary phase, 
and we have for large values of x 

= Im$,ei++ Im exp{ix(+$;k2+ 9&k3)}dk. 

Following Scorer (1950), we now replace the lower limit of integration by 
-&/&. This does not effect the result because the contribution from the 

kr-kT 
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interval (kI - k,, - #&/&) is negligible when x is large. w e  may now write c 
in the form 

where qs = (&)2 [~/2(&)~]%. Hereand after where an alternative sign is attached 
to a symbol the upper and lower sign correspond to S = T, D respectively. This 
approximation also holds when T, I and D coincide for when 181 = 8,. The expres- 
sion is simplified if we write 

$(k) = A(k)  ei"(k), 

and Ai (2) + i Gi (2) = K(z)  eidz). 

Scorer has tabulated K(z)  and K ( Z )  for Iz] < 6. We may then write 

As usual, l& and I& are called the transverse and divergent wave systems 
respectively. If the stationary phase approgimations to K (  - qs) and K(  - qs) are 
substituted in this formula, the usual stationary-phase approximations to CT 
and &, are obtained. For K(  - qs) N (m2qs)-* and K( - qs) N - &$ + in as qs + 03. 
By (1) we then have 

2n 4 
cs IV sin(&1:+&+%) 

for large values of qs. 

satisfied. The first is that the q5; should be sufficiently small, so that both 
The method may be justified briefly as follows. One of two conditions is to be 

and 

exP[ix($(-g)4+g(-$i)5+...]] + 1, 

(3) 

hold. Here ( 2 )  expresses the condition that the cubic approximation to q5 is 
sufficiently accurate in the neighbourhood of stationary phase, and (3) expresses 
the condition that the contribution from the intervals (Ic, - ks, - $,&5:) are 
negligible. It is easily found that the length of this interval is O(&)2 when the 
& are small, so that condition (3) is weaker than ( 2 ) .  Hence the first condition 
may be written 

The alternative, which is the condition for the validity of the usual method of 
stationary phase, is that the & should be sufficiently large so that 

(4) (&!34x < 1. 

\&px % 1. (5) 

The regions in which the alternatives (4) and (5) hold overlap if x is sufficiently 
large, and the approximation (1) is then valid for all 101 < 8,. 

For values of 161 > O,, #(k) has no turning point and we write 

M) $1 + &(k - k,) + Q&v - w3, 



An approximation to the ship-wave pattern 687 

for all values of k. Figure 2 shows this (cf. Hogner 1923, equation (33)). This 
approximation may be regarded as a further extension of the principle of 
stationary phase. For although here no turning point exists, the rate of change 
of phase is sufficiently small if 8 is sufficiently close to 8,. We have 

FIGURE 2. The approximation to &k) when 101 > 0,. The approximation 
is most accurate where the rate of change of phase is leaat. 

where p = +;(259/#1")*. A similar expression for cD holds except that the term 
in Gi (p) is prefixed by a minus sign. These results for CT and CD may be added to 
eliminate the term in Gi ( p ) ,  and we obtain 

2 4  

I X  
6 = 2 T A I ( T )  Ai(p)sin{#zx+az). 

This expression rapidly tends to zero as the angle 8 increases. However, it is 
of interest to extend the two wave systems beyond the critical line, so that the 
manner in which the transverse and divergent wave system interfere with each 
other may be seen. The expressions for CT and cD when IS1 > 19, may be written 
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3. The wave pattern 
The surface displacement given by (1) and (6) is calculated in the vicinity of 

0 = Oc with z + 104. It is assumed that $(k) in the region is a constant, which for 
convenience we take to be n-l. The parameter used for the calculations is A, 
where A2 = 1 - 8 tan20. This gives 

The substitution y = ( ~ / 2  42) - 7 is also made, so that for small A, 

V/X = A'( 1 + ;tA2)/4 42, 

and for small 7, p and qs are proportional to x-iq. It is interesting that although 
there is an optimum choice of axes by which the approximation is most accurate, 
a change of origin shows that the critical line is fixed only in direction. This is 
illustrated by the extent of the region where the surface displacement is O(z-)). 
Ursell(l960, pp. 429,430) has shown that this region extends to a distance O ( d )  
on both sides of the critical line. Here it is shown by the form of p and q. For 
example, outside the critical line, for values of p less than about 1 (or for values 
of 7 in the range 0 > 7 > - +x*), cT, &, and 6 are comparable with Q. For small 
values of A a series expansion is made; and for points just within the critical angle, 
we have 

x sin (#)# 1 +- A2 +-- 61 A4) x -t K[=+ A2x% (1 k $A+ fa.)]]. 1 ( 6 216 

The variation of amplitude and phase with 7 for the divergent and transverse 
wave systems is shown in figure 3. cT, cD and 6 may be written in the forms 

and 

so that B is the phase of the combined wave system with respect to the curve 
$* + $D = const. B has a maximum of about 1.09 at 7 i 13, a minimum of about 
0.06 st 7 = 28, and at 7 = 0, B + 0.71. Since the amplitude B, and the phases 
eS of the two wave systems are comparable with each other in the vicinity of O,., 
the phase of the resultant wave system changes rapidly in regions where cT 
and cD are opposed, that is, in regions where eT + eD = n. Ursell(l960, figures 2-4 
and p. 431) shows this and explains this in terms of the zeros of the Airy integral. 
Here in figure 4 it is shown by a bend in the curve of zero surface displacement in 
the region of 7 = 28. Figure 4 also shows the two wave systems extended beyond 
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the critical line. Here the amplitudes of both waves steadily decrease and the 
crests of one system rapidly approach the troughs of the other. 

The general character of the results is similar to those of Hogner (1923) and 
Ursell(l960). However, differences in detail are to be expected since a different 
form of 9 is used here. There is a corresponding difference in $, but this is not 
taken into account since the nature of $ depends on the ship, as does the nature 
of the waves. This partly accounts for the difference between Hogner's curves of 

Transverse wave 

Ordinary station 

I I I I I I I I I I I I 

100 90 80 70 60 50 40 30 20 10 
- 7  

Divergent wave Transverse wave. 

10" 

I I I I I I 1 I I I 1 

100 90 80 70 60 50 40 30 20 10 0 -10 

+ 9  

FIUURE 3. Curves of amplitude and phase for the divergent and transverse wave systems 
in the critical region for z = 1 0 4 .  The amplitude of both systems are comparable with each 
other, but the variation of amplitude and phase is more rapid for the trwverse waves. 

the divergent and transverse wave amplitudes and those shown in figure 3. There 
is also another reason for this difference. Hogner defines cl and c2 differently 
from their counterparts in this paper. In effect the values cT and CD are augmented 
and diminished respectively by an integral taken along a path in the complex 
k-plane from the point k, on the real axis to - i 00. The contours of the system, 
not shown here, are similar to those given by Ursell (1960, figure 4). Ursell 
derives for C a full asymptotic development whose form remains unchanged 
across the critical line. However, the simplicity and directness of the method 
described here have obvious advantages if a first approximation is required. 

Further, when $(k) is variable the method quickly gives an idea of the magni- 
tude of the transverse and divergent waves over the whole wave pattern. Thus, 
for ships of broad beam moving at slow speeds, the transverse waves dominate 
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the pattern, but for slender high-speed craft the divergent waves are most 
prominent. For example, 

1 Divergent wav 

Isverse wave crests 

;verse wave troughs 
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9970 9980 9990 10,000 10.010 10,020 
X +  

FIGURE 4. Crests and troughs of the two wave systems in a critical region in the vicinity 
of z = lo4. Curve of zero surface displacement are shown as broken lines. These curves 
turn sharply in the region of 7 = 28, where the two wave systems are opposed, because 
the two systems have nearly equal amplitudes. Beyond the critical line the amplitudes of 
both systems are equal and decrease like 7-l. Here the troughs of one system rapidly 
approach the create of the other and the resultant surface displacement dies away extremely 
rapidly, like (yz)-* exp ( - qPz-*), where c is a constant; but for values of 7 in the range 
0 > 7 > - id, 6, CD and 5 are comparable with Q (= 5 for 0 = OC). 
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represents a ' forcive ' whose strength at  any point is proportional to 

(a2+z2)-l (b2+y2)-l. 

This forcive is of infinite extent, but beyond certain points its effect is negligible, 
and expression (7) therefore represents a disturbance whose beam-length ratio 
is bla. If the ship is moving at  an angle of yaw /3, (7) becomes 

+(k) = exp[-$coshklcosg-sin/3sinhlcl I 
x exp [ - cosh k ]sin@+ cos/3 sinh kl . I 

(b)P = In 
1.0 

08 

0.6 

0 4  

0.2 

0 

t o n +  
FIGURE 6. Variation of the amplitude of the transverse and divergent waves for a slender 
high-speed craft, whose beam-length ratio is 1 : 10. (a) For no yaw, B = 0. ( b )  Lateral 
motion, B = fr. This also illustrates the nature of the relative wave amplitudes for a slow 
moving broad-beamed ship. 

In particular for points at 8 (8 > 0 )  well within the critical angle, this gives 
expressions for the amplitudes of the transverse and divergent waves which 
are proportional to 

where 

For corresponding points at - 8, we obtain the same expressions for the wave 
amplitudes except that /3 is replaced by - 8. The relative amplitudes for /3 = 0 ,  
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p = &r are shown in figure 5, where values of a' = 1 and b' = 0-1 have been taken. 
It shows that for such a craft moving ahead at high speed, the divergent waves 
are most prominent, whereas a broadside current produces mostly transverse 
waves. 

An interesting case arises when p = tan-lj2 + 544", i.e. when the ship lies 
parallel to the wave crests at the critical line, for then the largest wave amplitudes 
occur. For negative 8, very large divergent waves occur which dominate the 
pattern. When 181 is smaller or when 0 is positive, however, transverse waves of 

2 4  

0 a s 
2.0 .s 

a3 E 

0 4  

+e+  
FIUURE 6.  Variation of the amplitude of the transverse and divergent waves for a slender 
high-speed craft whose beam--length ratio is 1 : 10, for an angle of yaw p = tan-ld2 = 54%" 
and z = 104. Here the centre-line of the ship is parallel to the wave crests at the critical 
line on the after port side. 

smaller amplitude are most apparent. Figure 6 illustrates this. These results are 
similar to those of Scorer (1956a, b) ,  where lee waves caused by direct and 
oblique airflow over an isolated hill are discussed. 

I would like to express my warmest thanks to Dr Scorer for suggesting this 
problem and for his very valuable help and encouragement during all stages of 
this work. 
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